
A RESTful interface to Annotations on the Web

Steve Cassidy

Centre for Language Technology
Department of Computing

Macquarie University
Sydney

steve.cassidy@mq.edu.au

Abstract
Annotation data is stored and manipulated in various formats and there have been a number of efforts to build generalised models of
annotation to support sharing of data between tools. This work has shown that it is possible to store annotations from many different
tools in a single canonical format and allow transformation into other formats as needed. However, moving data between formats is often
a matter of importing or exporting from one tool to another. This paper describes a web-based interface to annotation data that makes
use of an abstract model of annotation in its internal store but is able to deliver a variety of annotation formats to clients over the web.

1. Introduction
There has been considerable work in recent years on build-
ing generalised models of annotation and defining inter-
change file formats such that data can be moved between
tools. This work offers the hope that annotation data can be
released from the project or discipline specific dungeons it
is often locked in due only to the difficulty in understanding
data from foreign tools. However, while data sits in files on
a researcher’s disk it remains hard to discover it and get ac-
cess, let alone collaborate on the development of a corpus.
A second problem is that annotations, even in well known
and widely distributed corpora, can’t be cited in the same
way that we might cite a result in a research paper. Excep-
tions to this are cases where the authors of a corpus have
taken care to define reference codes for segments of the cor-
pus (e.g. the line numbers of the Brown corpus).
We propose that both of these problems can be addressed
by defining a well structured interface to corpora and an-
notations over the web. Such an interface would have the
advantage of defining a public URI for every corpus and
annotation within the corpus that could be cited in a re-
search paper. It could also allow widespread access to data
from remote locations to facilitate collaboration and shar-
ing of annotations. Using the infrastructure of the web al-
lows technologies such as caching and access control to be
layered on top of the basic interface.
This paper describes the core of a web based interface to
corpora. At present this interface only supports reading of
annotations from a central annotation store. However, the
design has been built with a view to enabling read/write
access to data over the web.

2. Background
A number of proposals have been made in recent years for
generalised data models for Linguistic annotation. These
models provide an abstract representation of annotation
data that subsumes practices in the majority of research ar-
eas where language data is annotated or marked up in some
way. While there are some differences in the proposals they
are largely compatible with each other; this is perhaps not
surprising since they are designed to support transformation
to and from a similar set of end-user formats.

Two examples whose design is particularly focussed on in-
terchange of annotations between formats are Annotation
Graphs (Bird and Liberman, 2001) and the Linguistic An-
notation Framework (Ide and Romary, 2007). Both are
structured as directed graph structures with annotations as
nodes in the graph; annotations are distinct objects carrying
arbitrary feature structures (attribute-value pairs) and may
be related to each other by many kinds of relations. Both
formats make use of so called stand-off markup where the
annotations are stored separately to the primary data itself.
Locations in the primary data are indicated by pointers; for
audio and video data these are time values, for textual data
they can be character offsets or XPointer references.
The use of annotations that point into primary data instead
of being embedded in it was motivated in part by the need to
be able to represent overlapping hierarchies. Since XML,
a common format used for annotation, can only directly
represent a single hierarchy, a solution that separated the
different hierarchies into different XML files was used. A
side effect of this change is that annotations can be man-
aged separately to the primary data, paving the way for an
annotation architecture that uses an abstract interface rather
than an application specific file format.
The work described here develops on this idea of an ab-
stract interface to an annotation store as an alternative to
reading and writing annotation files. Instead of thinking
of annotations as elements in files and corpora being col-
lections of these files we abstract these ideas to make all
of these things resources within an annotation store. Inter-
nally in our system, we store annotations as assertions in an
RDF triple store and provide an abstract interface for cre-
ation, deletion and query of annotation data. The proposal
in this paper though, does not make any assumptions about
the kind of store that is used; only that it supports the idea
of annotations as separate entities. This is true of the Anno-
tation Graph system for example and will generally be true
of any tool that displays and manipulates annotation data.
This work has been implemented in a development sys-
tem that is being used as part of a larger project to sup-
port collaborative annotation on language resources. A
demonstration of the service may be available at the URI
http://dada1.ics.mq.edu.au/ depending on the



current status of the software.
This paper first highlights the capabilities of the HTTP
transport layer, then develops the design of an interface to
annotation data over HTTP and finally describes some ex-
tensions to this interface that we are currently exploring.

2.1. HTTP and the Web

The Hypertext Transfer Protocol (HTTP) is the base proto-
col of the World Wide Web and defines the conversation
that takes place between a web server and a client such
as a web browser. The original web was conceived as a
read/write medium and the design of HTTP reflects this in
the provision of actions for creating, updating and delet-
ing resources as well as retrieving them. Until recently, the
two-way nature of HTTP was not widely exploited but the
development of web services following the REST (Repre-
sentational State Transfer) architecture (Fielding, 2000) has
highlighted the power of the original design.
The REST view of the web is as a means to provide ac-
cess to resources that are identified by unique addresses
(the Uniform Resource Identifier or URI). Resources are
accessed through a constrained set of operations for trans-
ferring state information between client and server; be it a
GET request to retrieve the current state of a resource or
a POST request to update it. State information can range
from the content of an HTML web page to the contents of
a shopping cart or a value in a data store. It is also common
to differentiate the internal form of the resource from the
surface form that is transferred over the network. Hence,
the current temperature on a web accessible device could
be transferred as a simple text file, an XML document or an
HTML web page. The form of the response is determined
by the request that is sent from client to server.
The most common request in HTTP is GET which retrieves
the current state of a resource. A POST request is often
used to submit form data to a web service but in general is
intended to submit data to a resource and can be interpreted
as creating a subsidiary resource (e.g.. a file within a folder)
or updating an existing resource. Less commonly used are
PUT and DELETE which create new resources and delete
them; since these generally imply creating and deleting files
on a server they are not generally implemented for security
reasons. HTTP supports a few other kinds of request and
there are a number of extensions to the protocol to support
additional applications (for example WebDAV to support
remote file stores).
While HTTP is an inherently open protocol, it is able to
support secure and authenticated access to resources. En-
crypted connections using the Secure Sockets Layer (SSL)
mean that traffic over the network cannot be intercepted.
Authentication can be layered on top of the basic HTTP
protocol using cookies - additional headers exchanged with
every transaction. In combination, these can provide secure
access to resources mediated via appropriate authentication
and authorisation controls. This is an important feature for
working with language resources which often need to be
protected from general access; some work relating to this
will be outlined later in the paper.

3. Annotations on the Web
3.1. What gets a URI?

The first question in designing an interface to annotations
over the web is that of designing the URI space – the logical
structure of URIs used to retrieve and modify annotations.
Closely tied to this is the question of what should have a
URI of its own. Our proposal is for a three-level abstrac-
tion of resources from the annotation store: corpora, an-
notation sets and annotations. We also include an explicit
representation of an annotation end point (start or end time
or pointer to a document location) called an anchor.
Each of these kind of resource is identified by a unique URI.
This is both a canonical name for the resource and a means
of accessing a description of it over the HTTP interface.
Corpora represent collections of documents whose anno-
tations are stored on the server. A corpus might be a tradi-
tional curated collection such as the TIMIT or BNC cor-
pora, or an ad-hoc collection by a single researcher. A
corpus has a URI of the form http://example.org/
corpora/NAME where NAME is a symbolic name for
the corpus1 A collection of corpora housed on a given
server will also have a URI (http://example.org/
corpora/ here) that could be used to discover what data
is available on this server.
Annotation Sets are containers for the annotations on a
single document or media file. It is common to have this
level of abstraction when using a tool such as ELAN (Wit-
tenburg et al., 2006) or Transcriber (Barras et al., 1998)
that stores all annotations on a media file in a single XML
file. Annotation sets might correspond to more than one
of these XML files in the case when multiple kinds of an-
notation are stored in different files. An annotation set is
always part of a corpus and has the corpus URI as a prefix
of its URI which is of the form http://example.org/
corpora/NAME/ASID; ASID here is a unique identifier
for the annotation set.
Annotations are the individual annotations that make up
an annotation set. A single annotation might store the part
of speech of a word or a phonetic label for a segment of
a speech signal. The URI of an annotation has an an-
notation set URI as a prefix: http://example.org/
corpora/NAME/ASID/ANNID where ANNID is an an-
notation identifier.
Anchors are the endpoints of annotations and are repre-
sented as explicit resources to allow them to be shared be-
tween annotations. For example, one anchor may be the
end point of one annotation and the start point of a sec-
ond. Anchors appear in some form in many annotation
formats including Annotation Graphs (Bird and Liberman,
2001) and ELAN (Wittenburg et al., 2006) which calls them
time slots. Since anchors are also contained within annota-
tion sets, they also have a URI that has an annotation set
URI as a prefix: http://example.org/corpora/
NAME/ASID/ANCHIDwhere ANCHID is an anchor iden-
tifier.

1In these examples we use a common prefix of http://
example.org/corpora/ in all URIs, this is arbitrary and
will depend on the server used to store the corpora.



Each of these kind of resources can be described by a fea-
ture structure (in the TEI or ISO 24610-1 sense (M. Laurent
Romary and TC 37/SC 4/WG 2, 2006)) containing infor-
mation about the resource. This structure supports attach-
ing feature sets to any level of detail from the corpus to
the annotation itself. Feature values can include relations
between resources; these are easily expressed since each
resource has a unique URI that can appear as the value of
a feature. The vocabulary used in defining features is of
course important; we note that the Linguistic Annotation
Framework (Ide and Romary, 2007) is directly addressing
this need in setting up standards for a Data Category Reg-
istry that would allow mapping of feature names between
resources.

3.2. Responses to URIs
Having said that these resources have unique URIs that can
be published and accessed to allow sharing of annotations,
we still need to define what exactly will be returned if some-
one enters one of these URIs into a web browser.
By default, the response to a request for a URI from the an-
notation server will be an HTML representation of the re-
source being referenced. This means that someone can ac-
cess one of these published URIs in a web browser and see
a human readable representation of the corpus, annotation
set or annotation. The actual representation that is returned
is the concern of the implementer of the server and need not
be uniquely defined; for example, a server that holds anno-
tations of video data might be able to serve a representation
of an annotation set as a page with the video embedded
alongside a browseable version of the annotations similar
to that developed by the EOPAS project (Thieberger and
Schroeter, 2006) for ethnographic data.
Our current implementation includes links to all of the sub-
ordinate resources in the HTML representation. So, the
page generated for a corpus links to all of the annotation
sets in the corpus while the annotation set links to all of the
annotations. The page for an annotation includes all of the
properties associated with the annotation and links to any
other associated annotations (e.g.. parents, dependancies,
etc.).

3.2.1. Content Negotiation
A little used option in HTTP is the ability to have the web
browser request certain types of content when requesting a
resource. For example, I can ask for http://example.
org/data while saying that I will accept plain text or
PDF. The server can then respond with whichever of these
it is able to produce. This process is called content negoti-
ation and is not widespread partially because of the lack of
support for it in all browsers.
The web service described here makes use of content ne-
gotiation to serve different kinds of content to different
clients. If the client is a conventional web browser, the
server will generate HTML descriptions of resources; on
the other hand if the client is an annotation tool, it can re-
quest data, for example, in ELAN eaf format.
Content negotiation will allow us to serve different rep-
resentations of each of the resources to different kinds of
client. We can, for example, return a version of an anno-

tation set in the format required by an annotation tool such
as ELAN or Transcriber. In this way, the interface can re-
alise the format conversion functionality that is at the core
of standards such as LAF (Ide and Romary, 2007) or AG
(Bird and Liberman, 2001) transparently. The same an-
notation could then be accessed by an ELAN user and a
Transcriber user without having to distribute two distinct
versions of the annotation or go through any explicit con-
version process.
In some situations, content negotiation is not possible -
for example when including links in a web page or when
dealing with older HTTP client software. In these cases
it is possible to achieve the same end by augmenting
the URI of a resource with a query string indicating the
type of representation required. So, to retrieve an ELAN
format representation of an annotation set one could re-
trieve http://example.org/corpora/andosl/
foobar?format=application/xml+eaf (the
exact keyword and format indicator needs standardisation,
this example is included to illustrate this capability).

3.2.2. Low Level Access
There is a third possibility though that offers to realise the
full potential of the web based annotation store. That is
to return a form of each resource that can form the basis
of a read/write interface to the store. The idea here is that
instead of reading and writing annotation files in an XML
format, a tool could query the server directly for informa-
tion about the annotations on a document or media file. To
support this, the response to a request for an annotation set
could be a simple XML list of the URIs of the annotations,
perhaps with a small amount of data from each such as a
label or start and end times. Using this, an annotation tool
could determine which annotations are of interest and query
the server for more information about each. The response
to a request for an annotation could be a simple XML rep-
resentation of the annotation as a feature structure.
This kind of server would allow updates to be made to an-
notations using the same kind of messages sent from the
client to the server. To add a new annotation to an annota-
tion set the client would make a POST request to the an-
notation set URI http://example.org/corpora/
as123/ with a request body containing the feature struc-
ture for the new annotation. In response to the POST re-
quest, the server creates a new annotation and returns a
HTTP response confirming that it was created with the URI
of the new annotation. Similarly, a POST request to an ex-
isting annotation URI has the effect of updating the annota-
tion. Finally, the DELETE request to an annotation or an-
notation set URI can be used to remove the corresponding
resource. These requests can be used by an annotation tool
to directly manipulate the annotations stored on the server
rather than working through any kind of file format.

4. Building Upon the Interface
One of the primary advantages of defining a web based in-
terface based on HTTP access to resources is that the exist-
ing infrastructure of the web can be leveraged to add new
functionality with little extra effort. The web is a very ma-
ture family of technologies and many issues around effi-



cient, secure distribution of data have been addressed in
general purpose technologies layered on top of HTTP. A
few of the possibilities are outlined here.

4.1. Caching and Proxies
A significant problem with providing remote access to re-
sources such as annotations or primary linguistic data is the
time lag between a request and the response being deliv-
ered over the network. This would be an immediate barrier
to adoption of this kind of technology in some applications
which require very fast access to data. This is not a prob-
lem unique to annotation and since we have layered our
interface on top of HTTP we can take advantage of HTTP
caches to speed access to frequently accessed data.
An HTTP cache acts as a proxy between the client and
server such that most transactions occur just as they would
if no proxy were in place. The cache will however, remem-
ber the responses to some requests and, if configured ap-
propriately, will return a local copy of the response if it is
requested again. A cache can be run on an individual ma-
chine or within an organisation where the requests from all
users within a research group would be cached together,
speeding access to the resources being used by the group.
While a generic HTTP proxy cache such as Squid (http:
//www.squid-cache.org/) can be used in this way
there is scope for writing a special purpose proxy cache
that knows about usage patterns of annotation data. Such a
proxy could pre-fetch annotations that might be used in the
near future.
While caching files can be one important function of a
proxy server, it can also fulfil another role in this context.
A proxy acts as a mediator between the client and one or
more servers and as such can federate access to multiple
annotation servers. One could imagine a departmental or
institutional proxy supporting access to many servers via a
common cache while also serving local resources transpar-
ently to users. A network of such proxies could effectively
provide distributed, redundant, storage of annotation data.

4.2. Authentication and Authorisation
As described so far, all resources are available to anyone
on the internet to read and possibly update; this is clearly
not what would be required by most researchers and for
many language resources which must be restricted in some
way. Again, we can make use of existing technology on the
web to layer authentication and authorisation on top of the
HTTP interface described above.
HTTP provides a simple authorisation scheme as part of
the protocol which would allow resources to be password
protected. Web servers such as the Apache server allow
configuration settings that protect different URIs with dif-
ferent user names and passwords and this could be used to
restrict access to distinct groups of users. Similarly, the op-
erations that update an annotation (PUT, POST, DELETE)
can be given different levels of password protection using
standard server settings.
A more sophisticated solution has been developed for ap-
plications that require more complex authorisation rules
to be enforced. The XACML (XML Access Control
Markup Language, http://www.oasis-open.org/

committees/xacml/) standard allows complex access
control rules to be written which take into account exter-
nal factors such as the date or file properties such as size
or source of data. We are currently investigating the use of
XACML in conjunction with our annotation server to pro-
vide fine grained access control to both annotations and pri-
mary data. For example, one might want to restrict access
to part of a recording based on the identity of a speaker
in that recording. XACML allows the rules to be written
to express this restriction; we are now looking at how the
server infrastructure needs to be configured to put this into
practice.
Rather than require every server to maintain passwords and
user credentials for authorised users, the Shibboleth sys-
tem http://shibboleth.internet2.edu/ im-
plements a federation of identity providers such that a
user can be authenticated against their home institution.
An identity federation such as this would allow groups
of researchers to be granted access to resources based
on, for example, their host institution or membership of
some project. We are currently working with the RAMS
project at Macquarie http://www.melcoe.mq.edu.
au/projects/RAMP/ on integrating our server with the
Muradora data repository http://www.muradora.
org/, a version of the popular Fedora server that integrates
Shibboleth and provides a web based interface to building
XACML policy documents. Our work here aims to illus-
trate how access to source data, meta-data and annotations
can be mediated by appropriate authentication and authori-
sation.

4.3. Version Management
Annotations are not often static; errors are found and cor-
rected and new versions of corpora are published. Espe-
cially in the context of a collaborative annotation tool it
must be possible to manage different versions of annota-
tions and integrate version control operations such as roll-
back of changes or generating patch sets to send to other
users.
As part of our work on the back-end RDF annotation store
we have developed a version control system for RDF triple
stores that is designed to support these operations on anno-
tation data (Cassidy and Ballantine, 2007).
If the URIs published for annotation sets and annotations
are to be useful they must be constant over time. That is,
I must be able to publish a reliable URI for the annotation
set that I used for a given study, not one which points to the
most recent version of that annotation. Hence we must be
able to include revision information in the URI.
While we have not yet integrated our version control sys-
tem with the HTTP interface, there are a number of possible
ways in which one could refer to historical versions of data
via a URI. One simple option is to prefix the corpus name
with a revision identifier: http://example.org/
corpora/101029/andosl/msdjc001/ann0293 -
where 101029 uniquely identifies the revision of the anno-
tation that is being referred to. The most recent annotation
could still be referenced with out the version identifier but
the longer style could be used where longevity of reference
is required.



4.4. Mashups of Data and Annotations
One of the defining features of the recent boom of applica-
tions on the web has been the growth of mashups built from
data provided by different sources. A common component
of these is Google Maps http://maps.google.com/
which can be used to visualise geographic data available on
the web. The open nature of the web and the fact that data
is available in well defined formats using well defined inter-
faces means that data can be re-purposed into applications
that might not have been conceived by the original authors.
In the annotation domain there are many possibilities for
mashups that might combine annotation data with other
widely available data sources such as WordNet, Wikipedia
etc. Annotations might also be combined with each other;
for example, merging different styles of annotation or aug-
menting annotations with data from lexical resources. The
important point here is that this capability comes for free
once we adopt an open, well defined interface using well
understood technology.

5. Conclusion
This paper has given a brief overview of the design of a
web based interface to an annotation store. The design uses
the REST approach to make corpora, annotation sets and
annotations available as first class resources on the web.
This approach changes the way that annotation tools work
with annotation data. Instead of relying on local storage
of data in files, tools can work with an annotation store
through an abstract interface. The fact that this interface
uses the HTTP protocol of the web means that the store can
be remote and shared between users. By layering authen-
tication, authorisation, caching and other standard HTTP
technologies on top of the interface we can add additional
functionality to the interface.

6. References
Claude Barras, Edouard Geoffrois, Zhibiao Wu, and Mark

Liberman. 1998. Transcriber: a Free Tool for Seg-
menting, Labeling and Transcribing Speech. In Proceed-
ings of the First International Conference on Language
Resources and Evaluation (LREC),, pages 1373–1376,
Granada, Spain, May.

S. Bird and M. Liberman. 2001. A Formal Framework for
Linguistics Annotation. Speech Communication.

Steve Cassidy and James Ballantine. 2007. Version control
for rdf triple stores. In ICSOFT 2007, Barcelona, Spain,
July.

Roy Thomas Fielding. 2000. Architectural Styles and the
Design of Network-based Software Architectures. Uni-
versity of California, Irvine,.

N. Ide and L. Romary. 2007. Towards International Stan-
dards for Language Resources. In L. Dybkjaer, H. Hem-
sen, and W. Minker, editors, Evaluation of Text and
Speech Systems, pages 263–84. Springer.

M. Laurent Romary and TC 37/SC 4/WG 2. 2006. Lan-
guage resource management - Feature structures - Part 1:
Feature structure representation. In ISO 24610–1.

Nicholas Thieberger and Ronald Schroeter. 2006. EOPAS,
the EthnoER online representation of interlinear text. In

Linda Barwick and Nicholas Thieberger, editors, Sus-
tainable Data from Digital Fieldwork, pages 99–124,
University of Sydney, December.

Peter Wittenburg, Hennie Brugman, Albert Russel, Alex
Klassmann, and Han Sloetjes. 2006. ELAN : a profes-
sional framework for multimodality research. In Pro-
ceedings of the 5th International Conference on Lan-
guage Resources and Evaluation (LREC 2006).


